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Abstract

After the Hamilton principle for thermo-mechanical—electric coupling problem is derived, the third-order
shear deformation theory is extended to encompass piezothermoelastic laminated plates. Based on the
velocity feedback control, a model for the active vibration control of laminated plates with piezothermoelastic
sensor/actuator is established. An analytical solution is obtained for the case of general forces acting on a
simply supported piezothermoelastic laminated plate. Numerical results are presented. The factors that
influence the controlled responses of the plate are examined. © 1999 Elsevier Science Ltd. All rights reserved.
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Nomenclature

a length of the plate

b width of the plate

Cij transform reduced stiffness constant

D, electric displacement in the i axis

E; electric field intensity in the 7 axis

e; transformed reduced piezoelectric constant

f5(z) Lagrange interpolation function

H thickness of laminate

hy, h, thickness of G/E, PVDF lamina

K total kinetic energy

q; heat flow in the 7 axis

U total potential energy

u; displacement in the 7 axis

Uy displacement of a point on the midplane in x axis
o displacement of a point on the midplane in y axis
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W displacement of a point on the midplane in z axis

B transformed reduced thermal constant

& permitivity matrix

h Helmbholtz free energy

0., 0y temperature increase at the upper and lower surfaces of the plate
3 dissipative function

o, stress
Vi strain

n specific entropy

T; piezothermoelastic constant

A coeflicient of heat conduction

¢ electric potential

V., ¥, rotation of normals to midplane about y and x axes
@) excitation frequency

N the lowest natural frequency

1. Introduction

Due to the intrinsic thermo-mechanical-electric coupling effects, piezothermoelastic materials
have been widely used in engineering structures to detect the responses of the structure by measuring
the electric charge, sensing, or to reduce excessive responses by applying additional electric forces
or thermal forces, actuating. By integrating the sensing and actuating, it is possible to create so-
called intelligent structures and systems that can adapt to or correct for changing operating
conditions.

In order to utilize the sensing and actuating properties of piezothermoelastic materials, the
interaction between the structure and the smart material must be well understood. One of the
earliest and most comprehensive studies concerned with piezoelectric plates is the work of Tiersten
(1969), who obtained the dynamic equations and solutions with ignoring thermal effect. Crawley
and de Luise (1987), Im and Atluri (1989), and Chandra and Chopra (1993) developed the
mechanical models for studying the interaction of piezoelectric patches surface-mounted to beams.
Crawley and Lazarus (1991) used surface mounted piezoelectric devices in strain prediction and
control of structures. Lee (1990), and Mitchell and Reddy (1995) derived theories for laminated
piezoelectric plates using classical plate theory and simple third-order theory (Reddy, 1984),
respectively. Wang and Rogers (1991) presented a model based classical plate theory for laminated
plates with spatially distributed piezoelectric patches. Chandrashekhara and Agarwal (1993)
developed an active vibration control model for laminated plate with piezoelectric layer based on
the first-order shear deformation theory. Tzou (1989), and Tzou and Gadre (1989) analyzed thin
laminates coupled with shell actuators for distributed vibration control.

It has been recognized that the temperature variation can affect the overall performance of a
control system (Tzou and Tseng, 1990). The governing equations of a piezothermoelastic medium
were first derived by Mindlin (1961, 1974). Nowacki (1978, 1983) gave general theorems and
mathematical models of piezothermoelasticity. Rao and Sunar (1994) developed a finite element
formulation of piezothermoelastic media and integrated it with the distributed sensing and control
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of intelligent structures. Tauchert (1992) applied Nowacki’s general theory to a piezothermoelastic
laminated plate and obtained static solutions using the classical lamination theory. Tang and Xu
(1995) generalized Tauchert’s work to dynamic problems of piezothermoelastic laminated plates,
the dynamic solutions of the plates were derived for general forced vibrations with simply supported
boundary conditions. However, they did not establish the active vibration control model.

Since plates can be considered as fundamental elements of large space structures, video head
positioners, microgrippers, etc., the problem of how to detect their motions and control them are
two of the questions that naturally arise. In this paper, the Hamilton principle for thermo-
mechanical—electric coupling problem is derived first, then the work of Mitchell and Reddy (1995)
is extended to encompass piezothermoelastic laminated plates. Based on the velocity feedback
control, a model for the active vibration control of laminated plates with piezothermoelastic
sensor/actuator is established. An analytical solution is obtained for the case of general forces
acting on a simply supported piezothermoelastic laminated plate. Numerical results are presented.
The factors that influence the controlled responses of the plate are examined.

2. The Hamilton principle for thermo-mechanical-electric coupling problem

In this paper, the generalized Hamilton principle is applied to derive a set of approximate
governing equations for laminated plates with piezothermoelastic laminae. One of the approxi-
mations is that the electric field is quasistatic and that the influence of a magnetic field and
magnetization is negligible. The other is that deformations are infinitesimal and that electric fields
are small. In this section, the Hamilton principle will be derived based on Helmholtz energy.

Let V' be the spatial region occupied by the body considered, s be the total surface and n be the
outward normal. In a fixed rectangular coordinate system ox; (i = 1,2, 3), let u, ¢, o, D, E and q
be the displacements, electric potential, stress, electric induction, electric field and heat flow,
respectively, and 8 = T— Ty, is the temperature rise from the stress-free reference temperature 75,
Let n, Z and ¢ be the specific entropy, heat source and time, respectively. Field equation in the
domain V' x [0, o0), the governing equations are:

The strain—displacement and electric field-potential relations:

Vi = 3+ 1)

E = —9¢, (M
The equations of motion and the charge equation of electrostatics

Oijj = PU;

D,;=0 ()
The energy equation

q.:+Ton=E (3)

the constitutive equations

0y = CipVu— eyl — B0
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Di = 8isEv + eir.r’yrs + T[Q
0
n=pBy;+uki+ C? 4)
0

the heat conduction equations
g = — i), 5)

g

where ¢;u;, ey, €5, B> T 4; and C as the elasticity constants, piezoelectricity, permitivity, stress-
temperature coefficients, piezothermoelasticity, coefficients of heat conduction and heat capacity.
The mechanical boundary conditions are take to be
U; =1,
P,=a,n, =P, (6)

where the overbar — indicates the prescribed values on the boundary. The electric boundary
conditions are

o=
Q= —nD =Q

and the thermal boundary conditions are
0=20
Q=qn =0

Initial conditions are

u (X1, X0, x3,0) = tp;(x1, X5, X3)
w(x1,%5,x3,0) = 11,(xy, X5, X3)
0(x1, X5, x5,0) = 0y(xy, X, X3)
0(x,, x5, x3,0) = 0y(x,, X2, X3)
(X1, %5,x3,0) = o), x5, X3) 7

The total kinetic energy is
L
K == 5 pu,»u,« d V
v

The total potential energy is

U= J [(h(y;, 0, E;) +n0] dV—J Pu; dS-i-J (R—h6) dV—i—J Q_QdS-l-J‘ Q¢ ds
v ‘ Sp v So Sa
1 1 CH?
h= P Coird ViVt — i EgYi; — P & B B — ﬁzjjyljjg —1,E0— ﬁ
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R=1k;0,0,

where /i denotes the Helmholtz free energy.
The dissipative function is

9= 1yn0dv

Vv

Then, the Hamilton’s principle can be obtained as

153

f2 oh
ol (K=U—-9%)dt = (0:;,— pti;)Ou; — 20 +n 100 —(q.;+ Ty —E)00+ D, ,0¢ |dV
1 1 14

+| (Q=0)80ds—| (P,—P)ou;dS—| (Q—-Q)d¢dS di=0 (8)

Sg Sp Sa

This principle is analogous to that in Nowacki (1978), which can apply to all types of infinitesimal
deformation and small electric field plates. The control equations (1)—(3) and boundary conditions
(6) can be derived from the above equation.

3. Basic equations

In this section, we generalize Reddy’s work (Mitchell and Reddy, 1995) to piezothermoelastic
laminated plates. Consider a hybrid piezothermoelastic laminated plate, which is symmetrically
laminated, as shown in Fig. 1. The principle material directions are assumed to coincide with the
coordinates of the problem being analyzed. The constitutive relationship in vectorial form for a
piezothermoelastic material with orthorhombic mm?2 symmetry can be written as follows (see e.g.
Mindlin, 1974; Rao and Sunar, 1994)

a
Fig. 1. Laminate configuration.
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(o)) [ciy ¢ a5 0 0 0 () [0 0 ey ”adf (B
0> €2y €23 0 0 72 0 €32 ox B
<0'3>= €33 0 0 <V3>+ 0 0 e <%>_<ﬁ3 L9 )
o, cas 0 0 Va 0 ey O ay
Os ¢ss 0 Vs eis 0 0 %
LT J L Co6 | Vo) L0 0 0 \az, LY
(90 ra(ﬁ\
DI TO0 0 0 0 ex 0l e 0 01! (o
Dyv=0 0 0 e 0 04700 &, 0 <g¢>+00 (10)
D, e;; ey ez 0 0 0 A 0 0 e g Ts
Vs %
(Ve ) kaZJ

where o, 7;, D;, ¢ and 0 represent the stress, engineering strain, electric induction, electric potential
and temperature rise, respectively. ¢, are the transformed reduced stiffness, e; are transformed
piezoelectric constants and f; are transformed thermal constants that have been adjusted to
accommodate the plane stress approximation.

In the third-order shear deformation theory of Reddy (Reddy, 1984; Mitchell and Reddy, 1995),
the displacement field is assumed to be of the form

ow
U (xaya Z, t) = uO(xvya t) +gl (Z)lpx(xaya Z)_gZ(Z)TXO

ow
U, (xa Vs 2, t) = UO(xaya l) +gl (Z)l//y(xaya t) _gz(Z)TyO

”3(3@}’,2, t) = WO(X,J’, t) (11)

Here, u,, vy, w, are the displacement of a point on the midplane of the laminate, and y, ¥, denote
the rotations of a transverse normal at z = 0 about the y and x axes, respectively. The functions
g1(z) and g,(z) are given as

4z? 0 4z?
e 2y =
sz P T g

91(2) = z— (12)

where H is the total laminate thickness and z is assumed to be measured from the laminate
geometric midplane, and the electric potential function ¢ on a discrete layer is written as follows

¢k(x7yvzv l) = Zflf(z)(Pf(xJa Z) (13)
j=1
where /% (z) are taken to be Lagrange interpolation functions. Using these definitions, it is easy to

verify that the transverse shear stresses o, and o5 are zero at the upper and lower surfaces of the
plate. The plate is subject to the linear temperature variation (Tauchert, 1992)
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0,+0 Oy—0
0(z) = 0"2‘ Ny NH o,

(14)
where 6, and 0, denote temperature amplitude increases at the upper and lower surfaces of the
plate, respectively, which can be induced by infrared radiation.

Proceeding as described above, eqn (8) is expanded, giving

0=0K+0U+0E—oV

- J\Ujv p(u15u1+u25u2 +u357/l3)dth
0 Vv

(o [*
— {0'15'))1 +625'})2 +035'})3 +20’45'))4 +2055'y5 +2O-65y6} dVds
JO JV

(o [
—| | (D,6E, +D,6E, + D;6Ey) dVdr
JO JV

(o [
+ {P15HI+P25U2 +P35U3+q5¢)} deZ (15)

UO \/S

The first integral denotes the virtual kinetic energy, the second denotes the virtual work done
by internal forces, the third represents the contribution of the electric field and the fourth denotes
the virtual potential energy due to applied forces. The equilibrium equations for the laminated
piezothermoelectric plate are obtained the same as those of the plates of composite materials
(Reddy, 1984; Mitchell and Reddy, 1995)

Liig + L 1, O +aN1+aN6—0
tHo T 2Vx— 4 0x 0x oy
) . ow oN, 0N
_<Ilvo +Ly,—1; 6);0) ayz n axé _

1"+i1"+1¢ I%Jril"ﬂlﬁ 1%
1Wo ox 3Up sYx 65 dy 3o sYy 68)}

X

azpl + azp_z +2 82F6 aQ_4 aQ_S
ox? 0y? oxdy 0y ox

Lii+1 s I 8“70 0M1 0M6 s 0

- 2u+ 4'1[,,\‘_ 5 ax + 5)6 + ay _QS -
W\l oM, oM, -
_|:<1200 +I4l//y—15 ay >:|+ ay + ax Q

=0

+15+
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0P
0x

-GE=0 (x=1,2,j=1,2) (16)

o

where (N,, M., P,, Q,) are the stress resultants

H/2 H/2

H)2
Nf:J 0,dz, Mi:J 0.9,(2)dz, pi:J 09,(z)dz, i=1,2,6

—H2

H2

—HJ2 —HJ2

- d
Qi = J1 Giidz, i = 4, 5
_up 4z

(P* . G¥yand [, b, . .., [, are defined, respectively, as

(z,

_ _ : dre
P= | Dfie)dzn G = J 0, T

Vik—1 Zk—1

rH/2 H/2 H/2
Il - de, [ZZJ\ pgl dZ, I3=J pgzdz

J—H2 HJ2 H/2

(rH/2 H/2 H/2
I, = pgi1g1dz, Is = J pgi19.dz, Is = J pg>9>dz

J—H/2 HJ2 —H/2

Moreover, for symmetric laminated, by directly integrating it is readily obtained that I, = I; = 0.
Now, the stress results (N,, M,, P, O,) are decomposed into three parts

M,‘ - M,+MZP_M?
pi = Pi‘*’PfD_P?
Q_i:Qi‘f’Qf_Q? (17)

The first part is when the piezoelectric and thermal effects are not present. The second part is
due to the piezoelectric effect and the third part is due to the thermal effect. The first part is

obtained by integrating eqns (9) and (10) with respect to the thickness coordinate z. The resulting
expression for symmetric laminated plate takes the form

Ox
N] All Al2 0
v,
Ny = Ay, 0 x4 @ r (18)
N6 A66
Gy | 0o
Jdy = Ox
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FBH B12

0, . F,yy O
gj_[o &JX

1933
[ oy, )
ox
o,
O EIZ Ezz 0 6¢x+%
Bee 0 0 By o = ox
X < 2 > (19)
Dll D12 O . a WO
Dy, 0 ox?
Dye _62W0
oy*
0*w,
L oxdy |
ow
Ity
5 (20)
Wo
Vit Ox

where the laminate stiffness 4;;, B;; and so on are defined as

(FH|2
B:j/ = glglc;/dl B,
J—HJ2
rH/2
A,/ == C,] dZ, D” =
J—HJ2
rH/2
F44 =

j

H/2
J—H/Z
d 2 H/2 d 2
C44 < gl) dZ, F22 = J\ 655 < gl) dZ
J-Hp2 dz —H)2 dz

9192€;j dz

J N
—HJ2

ngZCij dZ (laj = 1,2, 6)

and the stress resultants due to the piezoelectric effect can be defined as

NP =Y &, <Z 11’i"'¢)f>,
j=1

z&(z%@)
J

m n
P k ik k
Py =) ¢, < L cp_,->,
= J

Py =% &, <Z nékco’§>, P{=0
J
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. % dr« . * dg
k= =Ldz, Nf= | —fkd
113 J\-'/‘— 1 gz dZ Z, J;k— 1 dZ ! i

In addition the stress resultants due to the thermal effects are defined as

N B M) TR

NY = zf" Bl0dz, (MY = zf" Bs|g,0dz
N‘(’, k=1 Zk*l_o_ M‘(’, k=1 Zr_) O

P B

Pl — zf‘ B, lga0dz, 0% =02 =0

P‘z k=1 Zk*l_o_

The boundary conditions are given as
uy orn,N,+n,Ng
vy orn,N,+n.N

.. oW .. ow

Wo OI Ry <15wx_168x()>+ny <15¢_1¢_166;)>+Qn
ow, _ _
A Or I’lXPI —i—l’lVP6

0x .
0wy _ _
— orn,P,+n. P

dy :

Y, or —n M, —n,M,
Y, or —n,M,—n .M,

where

oP, P, 0P, 0P,

E —fl‘},g —I’ZXW —I/ZJ,E —I’lyQ4 —I’IXQS

Qn = —Hny

@21

(22)

(23)

In this paper we study simply supported and symmetric cross-ply plates, the equations of motion

for the displacement can be expressed as
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0%u, 0%v, uy M no Opk ON!
A A A A k Jjk ) — o
RPN +(A12+ Aes) 8x8y+ 6 ay? +k§1 €31 (/Z,l’?] 6x> 1y + ox
. 2 vy, = no 0ph ONY
A A A A A L) =1 —_
+ (4124 A446) + Aee o2 +/<Z €32 (Zl m (3)/) 100 ay
0*wy 0*w, o*w, 0*w, 3wy - Y
_Dll ax (4D66+2D12) Zayz — 422 a 4 F44 ayz —J’_FSS a 2 +Bll ax3
3 '5 3
5 Y, N = Y, Y, o,
B,,+2B F B B,,+28B Fo—
+( 12—"_ 66) axayz + 55 ax + 22 a 3 +( 12+ 66) X + 44 ay
L L 0r b noo 0 62 k no o 0reh
st mel e Sl S LMD el
K=1 =1 ox =1 oy? oy? =1 ox
0 . 0w, 0 . ow, | 0*PY 0*PY
=T W+ = | IsW,—Ig— |+ | sY,— 1 - — 24
1Wo + ax |: wa 6 ax :|+ ay |: 5!//) 6 6)} :|+ axz + ayz t3 ( )
which corresponds to the stress resultants equilibrium equations, and
_ Pw _ _ 0w ow /e oMY,
— B, 6x30_(B12+2B“)8x76y02_F5557xO+B“ ox2 + B e —Fssy
2 k . )
lp} L no 0y om0 . ow, OM}
B, +B 1 P I e Y
+ (B, + 66) ‘|‘ Z ;1 o 6’15];1 4 oy 2V —1s ox + ox
a% % ow 821//, azlﬁv
—By—— o _(BIZ +2Bee) 6 —Fy—— P +B(,6 axz) + B,, 0y2’ —Fu,

25
k=1 j=1 dy dy dy oy 23)

m n n k . 0
(BIZ+366) +Z |: Z /ka(pj eg4 ZA]‘{(GQD/:|:I4¢J_156WO+5M2
j=1
which corresponds to the moment resultants equilibrium conditions. It can be seen that the thermal
effect and electric effect are explicitly included in eqns (24) and (25).
For sensor purposes, there exist two conditions: one is the close circuit condition (Lee, 1990)
and the other is the open-circuit (Tzou et al., 1993). In this paper, the piezothermoelastic lamine
is in the open-circuit condition, the following equation is adopted (Mitchell and Reddy, 1995),

. & n o df drr
Gy = J {331% +e32)2 —&33 (Z ({ (P1>+T30} dz] dz=0 (26)

Zk—1

Based on the thin lamina assumption, one linear interpolation function is used for the pie-
zothermoelastic lamina, substituting it into the aforesaid equation, and integrating through the
thickness of the kth lamina gives



1936 S. Shen, Z.-B. Kuang|International Journal of Solids and Structures 36 (1999) 1925-1947

) 1 (=
V :J {€31V1+e32V2+T39} dz (27)

€33 Zk—1

where V* = ¢f —@!. The left side of eqn (27) is the output voltage of the sensor, caused by the
strain and therm in the right side.

4. Non-damping vibration of a simply supported plate

To obtain meaningful solutions, in this section a laminated plate with simply supported boundary
conditions is studied. The hybrid laminate is a six-layer hybrid laminate by adding two pie-
zothermoelastic layers symmetrically to a four-layer graphite/epoxy substrate, which is a symmetric
cross-ply panel having ply angles [0°/90°]; and ply thickness %, (Fig. 1). Let H and &, denote the
total plate thickness and the piezothermoelastic layer thickness, respectively. The pie-
zothermoelastic layers are subjected to an applied electric potential ¢,. Material properties of the
laminae are given in the Appendix.

Employing the method analogous to (Mitchell and Reddy, 1995) each piezothermoelastic layer
can be regarded as two mathematical layers with equal thickness, whose electric potential can be
modeled using linear Lagrange elements.

Then, the electric potentials can be written as

L, __

(p%l = 4)09 (/)él = (Ple = d)L’ Pr° =

p' =0, @F =0 =¢y, 3" =¢,
where the superscript ‘L,” means the lower half of the lower piezothermoelastic layers, ‘L,” means
the upper half of the lower piezothermoelastic layer, ‘U,” means the lower half of the upper
piezothermoelastic layer and ‘U,” means the upper half of the upper piezothermoelastic layer. The
subscript ‘1’ represents the electric potential at the lower surface of the corresponding layer and
‘2’ the electric potential at the upper surface.

The solution for simply supported laminates has the following form:

0 s}
Uy = Z Z U,,, COS 0, X sin ﬁny eiw[
m=1n=1
o w |
UO - Z z Umn Sll’l Ome COS ﬁ”y el(l)l
m=1n=1
0 © |
Wy = Z Z Wi sin 0l X sin ﬂny elot
m=1n=1
0 © |
wx = Z Z '\pyf/m COS OCm_X Sln ﬁny el(t)l
m=1n=1
0 s}

lpy = Z z lpir.m Sil'l 0, X COS ﬁny eiwt

m=1n=1
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O 0
¢L = Z Z d)yLym Sin o, X Sin [))ny ei(/)l

m=1n=1

b= 3 G, sino,xsin fye (28)

m=1n=1

where «,, = (mn/a), f, = (nn/b) and w is the excitation frequency.
The plate is subjected to the harmonic mechanical force

t3 (x’ya z, [) = [3 (.X, y) eiwt (29)

The temperature variation is

0p+0y 0,—0 _
0(x, y, z, ) :( OJ; N_ °H NZ)@"”’ (30)

The electric potential is

bo(x,p,2, 1) = Po(x,p) e (3
These tractions can be expanded in the double-Fourier series as

o0

o0
0= Y Y 0,,sina,xsinf,ye

m=1n=1

o0
ty=> Y tu,sina,xsinf,ye

o0 o0
do =Y, > GPomsina,xsinf,ye

m=1n=1

(N M M ) = Z Z (Nlmna 2mn9 ln1)17 M2mna lena 2mn) Sln %y XSIH ﬂny elwt (32)

m=1n=1

where

4 b (fa
(Omm [mna (bOmn) = abJ\ J\ (07 t3a ¢0) Sin 0y X Sin ﬁny dx dy

0 JO

and (Nlmns 2mn’ Mlmns M2mn, len’ 2mn) can be made out by the same Way
Substituting (28)—(32) into eqns (21), (22), (24) and (25), collecting the coefficients, one obtains

|:—A110C,2,7—A66ﬂ3+11602 _(Al2 +A66)a)11ﬂn j| {umn} _ {amN?mn}

(33)
_(AIZ +A66)amﬂn _A66a7211_A22ﬂ3+[1w2 ﬂnNZmn

Ulﬂﬂ

and
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EU=T
for any fixed value of m and n, in which

U= Yo Vo G dal”
(LA + AT (e2a B +ersom) + (13" +13%) (ea2 i +-e31%) ] P o — Pt

— P = tun

M0 —[e31 (12" +13%) — ey 5 (AL + A% Doy
M5B —les2 (15 +13%) —eau (AL + A Budomn
Xom+Xom— (e33R +e1 T o+ 62T B7) o
- Xom+ X — (€33 R 411 T3 00 4625 T3 B2) Poun J

where X, are determined by

Zk d k ©  © )
1,0-2dz =) > X, sina,xsinf,y
Zk—1

dZ m=1n=1

The elements of the coefficient matrix E that is symmetric are given by

E\, = —D 05, — (4D +2D )0, fr — Dos s+ Fauf — Fssom+ 1,0 + Le0* (0, + )

E, = B o+ (B> +2B¢¢) 0, B — Fssa,, — [sw’a,,

E\5 = Byy0, 4+ (B, +2B¢¢) p02 — Faup,— Is00* B,

Eiy = —(AY +AP) (e +er500) — (03" +137) (€327 +e312,)
= —(AF + AP (ersBr +eys00) — (13" +13°) (€327 +e310)
E,, = — B 00— Beofr — Fss + 1,0°

E,; = — (B2, + Bgo) P,

Eyy = [es1 (13" +12°) —eis (A3 +As)]a,

Eys = [es1 (13" +12°) —eis (AT +As%)]o,

Eyy = —Bgoop,— By fa — Fuy + Li00?

Esy = [e5n (13" +1m2%) —exs (A +A)]B,

Ess = [esa (3 +12°) —exu (AT +AL%)]B,

Euy = (T3 +T1)ey o0+ (R 4+ R)ess + (T3 + T17)ea By
E,s=0

Ess = (T3 +T1%e 05+ (R 4+ R1¥)ess + (T3 + T1%)e,, p2

where

S
|

(34)

(35)

(36)

(37
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_ 2k _ % dff dft
vk — k ko — RS
T J lf,fj dz, R/ J | & ds dz

Zp— Zp—

The theory developed herein can be reduced to the classical plate theory when one lets g,(z) = 0.
This theory can also be applied to a laminate plate with spatially distribute piezothermoelastic
patches. In this case, the thickness and size of piezothermoelastic patches are assumed to be
relatively smaller than those of each lamina, so piezothermoelastic patches can be neglected for
calculating the global properties of the laminate.
The electric potential function for distributed piezothermoelastic patches is given as

#0020 = 3 SO0 DR) (39)

where the generalized location function is defined as

Ri(x,p) = [H(x—x)) — H(x—x5)] - [H(y =) — H(y—5)]
and the Heaviside function, H(x — Xx,) is defined as follows
Hx—xy) =1, z2>=z
=0, z<z (39)

Replacing ¢} by ¢ R, in eqns (24) and (25), one can obtain the control equations for distributed
piezothermoelastic patches.

To investigate the effect of the position of the PVDF layer on the deflection of the laminate, two
cases, which are shown in Fig. 2(b and ¢) are computed in this section. Figure 3 contains the static
deflection at the center of the plate for these two cases. When the laminate is only subjected to the
thermal field, it is noted that the deflection of case 1 is greater than that of case 2 (as shown in Fig.
3(a)). Similarly, when the laminate is subjected to the electric field alone, Fig. 3(b) shows that the
deflection of case 1 is greater than that of case 2. These figures imply that the position of the PVDF
layer has an important effect on the performance of the smart structure, which is rational due to
the fact that the moment resultants vary with the position of the PVDF layer.

5. Active vibration control of simply supported plates

As shown above, the actuator and sensor equations have been developed separately. For an
improved system performance, they have to be used in conjunction to form a closed-loop control
system. Based on the velocity feedback control, the model for active vibration control of simply
supported laminated plates with piezothermoelastic sensor/actuator is developed.

Consider a hybrid piezothermoelastic laminated plate as shown in Fig. 1. In this section, the
sensor eqn (27) is employed. Thus, the output voltage of the sensor can be expressed as

1 Ou, oy, (7 *w, (71 0v,
V:833{e3] |:5X(ZI_ZO)+ axJ gldz_ﬁ g, dz |+e;, @(21—20)

20 - 20
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Feedback Control
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Fig. 3. The effect of position of PVDF on deflection (a¢/H = 50). (a) 6, = 1°C, 0y, =0°C, ¢ =0 V. (b) 6, =0y = 0°C,
¢=1V.

a (= aZW Z =)
+ ;}J gidz——" J 7 dz]+r3 J de} (40)
y Z0 ay Z0 Z0

This equation states that the output voltage of the sensor relates the displacement and reflects
the vibration of the laminate. To dampen the response of the system, one may use the electric
potential to the actuator as the control variable. Since the output voltage of the sensor is accessible,

the electric potential applied to the actuator can be expressed as
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. N, o*w o o*w
¢N:MV:AWFIM ‘%ax 936;}+M[Qay Qz®j—m ®° zgwew
(41)
where M is the gain to provide feedback control and
€s; . T M 2 z)
Ay = M, (i=12), Ahy=—", Q =2z,—2, Qz=J g1dz, Q, =J g>dz
€33 €33 0 0

As the gain is constant with respect to time, this controller is known as a constant gain feedback
controller.

For simply supported plate, the responses of the laminate and the excitation are expressed in
double Fourier series just like that in Section 4, but replacing u,,, e’ by the general form u,,,(7).
Thus substituting eqn (41) into eqns (24) and (25), one can obtain the control equation as

Tmn an + anan + Kmnxmn = an (42)
where
__11_16(a131+ﬁ5) IS(xm ISBH O O —‘
I, 0 0 0
Tmrl == - [4 O O
I, 0
L - Il il

an = [W’Tl}’l (Z) lpn’”'[ (t) lpﬂ?ﬂ (t) umn (Z) Um” (t)] T
K = Ejl,—o (i,j<3), KGD =K = — (A2 + Aee) %
KD = —(A”ocyz,,—i—A%ﬁi), K_) = —(A660657+A22ﬁ3), K@) =0 (for remaining 7, )

Q5 (2 00,4 227) ) ' [—ns(es0m +esafi) —Ay(ersop,+efin) )
—Qy 40, (€311, —e15A4) 0,
Q.=F<{ -, +, F={ (€322 —e34A4) B, r
—Q 40, €311 10y,
L QB ) L €321 By J

_ 0 0 0 T L
Zmn [ len O P2mn n an Mlmn O M2mnﬁn Nlmn(xm N2mnﬁn] —lA; GmnF

Z1
Gnm = J 0"1}’[ dZ
20

Here, Q,,, is the feedback gain matrix, i.e. the equivalent damping matrix. The Newmark direct
integration scheme (Hughes et al., 1978) can be used to approximate the time derivative in eqn
(42).
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In this section, these excitations are assumed to be harmonic, they can be expressed as
Z,.(1) =Z,,e"", the steady response of the system can also be expressed X,,.(7) = X,,,e". Sub-
stituting this form into eqn (42) and canceling the factor ¢’ yields

[Kmn - sznm + inmn]an = ZHHZ (43)

Solving this equation can obtain the amplitude X,,,..

A numerical example is calculated to show the effect of the property, relative thickness and the
position of the piezothermoelastic layer on the performance of the laminate. Attention is again
given to the configuration and geometry of the plate shown in Fig. 1. The plate lay-up and material
properties are also described in Section 4. In this procedure, three cases are involved which are
shown in Fig. 2 (b, ¢, and d), representing three different positions of the piezothermoelastic
sensor/actuator pairs with thickness /,. The control model is shown in Fig. 2(a). The observation
pointisat x = 0.5z and y = 0.5 in the plate. The thermal force is considered, and the temperatures
on the lower and upper surface are 8, = 80°C and 6, = 0°C, respectively.

In Table 1, we give the lowest natural frequencies w, under different /,/h, for these three cases
where the sensor/actuator pairs are PVDF.

Figures 4-6 contain the amplitude of the response w vs the excitation frequency under different
gains for all three of the previously mentioned cases and for three different ratios #4,/h,. The
sensor/actuator pairs are PVDF. From these figures, one can find: in case 1, the response is reduced
by increasing feedback gains M in the vicinity of w,, while w is far from w,, the change of the
response by increasing M is very small; when M reaches a certain value, the response becomes a
gentle curve whose climax is at w = 0, moreover, the climax decreases as the thickness of PVDF
increases.

In case 2, the result is complicated. Increasing M, the position of the climax moves forward and
the climax first decreases, then increases. When w is far away from the position of the climax, the
response decreases as M increases. This means that there exists a certain M that can reduce the
response obviously.

In case 3, the response can hardly be suppressed for small piezothermoelastic thickness ratios
h,/h,. While h,/h, is greater, the effect is similar to that of case 2.

These figures state that the control effect of case 1 is better than that of the others. This provides
a rationale to surface mounted piezothermoelastic devices in structural vibration damping.

For PZT sensor/actuator pairs the results are given in Fig. 7 where the piezothermoelastic
thickness ratio /,/h, = 0.02. The trend resembles that for PVDF. However, due to the fact that the
density of PZT is greater than that of graphite/epoxy, the PZT pairs have an obvious effect on the

Table 1
The lowest natural frequencies

hs/h, Case 1 Case 2 Case 3

0.02 167.630 169.447 170.057
1.0 140.111 213.939 242.559
2.0 128.880 254.038 305.370
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global properties of the laminate. Comparing Fig. 7(a) and Fig. 4(a), the reductions by PZT is
more obvious than that by PVDF, the climax is suppressed at M = 10, but, in factor the response
by PZT is greater than that by PVDF at the same M. This implies that the control effect of PZT
is no better than that of PVDF.

6. Conclusion

In this paper, the third-order shear deformation theory of Reddy is extended to encompass
piezothermoelastic laminated plates. Based on the voltage velocity feedback control the model
for the active vibration control of simple supported laminated plates with piezothermoelastic
sensor/actuator pairs is established. The results allow us to select the best piezothermoelastic
material, position and thickness ratio of the sensor/actuator pairs to control the response of the
structure. The harmonic response results show a potential application to actively reduce the
harmful effect from thermal forces for a certain control aim.

Appendix

Material properties

Graphite/epoxy

E, =181 GPa, E, = E; = 10.3 GPa

G, =G;;=17.17 GPa, Gy; = 2.87 GPa

Mz = iz = 0.28, p3 = 0.33

o, =002x107°K "o, =03 =22.5x107°K ™'
p = 1580 kg/m’*

PZT (Dunn and Taya, 1993):

(148 762 742 0 0 0
148 742 0 0 0
. 131 0 0 0
c frd GPa,
254 0 0
254 0
i 35.9 |
0 0 —21
0 0 -—21
460 0 0
0 0 95 )
el = ¢/m*, —=|0 460 0
0 92 0 0
0 0 235
92 0 0
_0 -




1946 S. Shen, Z.-B. Kuang|International Journal of Solids and Structures 36 (1999) 1925-1947

a=09x10"* K~ p=7600kgm’® g =885x10""*¢c*/Nm?
PVDF (Varadan et al., 1989)

[3.61 1.61 1.42 0 0
3.13 1.31 0 0
. 1.63 0 0 0
c frd GPa,
0.55 0 0
0.59 0
i 0.69 |
) 21.0 |
0 1.5
6.1 0 0
0 —32.5 e
d7 = x107"2¢/N, — =0 7.5 0
0 -23 0 &
0 0 6.7
-27 0 0
0 0 0

e’ =cfd’, a=120x10"K~', p = 1800 kg/m®
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