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Abstract

After the Hamilton principle for thermo!mechanicalÐelectric coupling problem is derived\ the third!order
shear deformation theory is extended to encompass piezothermoelastic laminated plates[ Based on the
velocity feedback control\ a model for the active vibration control of laminated plates with piezothermoelastic
sensor:actuator is established[ An analytical solution is obtained for the case of general forces acting on a
simply supported piezothermoelastic laminated plate[ Numerical results are presented[ The factors that
in~uence the controlled responses of the plate are examined[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a length of the plate
b width of the plate
cij transform reduced sti}ness constant
Di electric displacement in the i axis
Ei electric _eld intensity in the i axis
eij transformed reduced piezoelectric constant
f k

j "z# Lagrange interpolation function
H thickness of laminate
h0\ h1 thickness of G:E\ PVDF lamina
K total kinetic energy
qi heat ~ow in the i axis
U total potential energy
ui displacement in the i axis
u9 displacement of a point on the midplane in x axis
v9 displacement of a point on the midplane in y axis
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w9 displacement of a point on the midplane in z axis
bi transformed reduced thermal constant
oij permitivity matrix
2 Helmholtz free energy
u9\ uN temperature increase at the upper and lower surfaces of the plate
q dissipative function
si stress
gi strain
h speci_c entropy
ti piezothermoelastic constant
lij coe.cient of heat conduction
f electric potential
cx\ cy rotation of normals to midplane about y and x axes
v excitation frequency
v9 the lowest natural frequency

0[ Introduction

Due to the intrinsic thermo!mechanicalÐelectric coupling e}ects\ piezothermoelastic materials
have been widely used in engineering structures to detect the responses of the structure by measuring
the electric charge\ sensing\ or to reduce excessive responses by applying additional electric forces
or thermal forces\ actuating[ By integrating the sensing and actuating\ it is possible to create so!
called intelligent structures and systems that can adapt to or correct for changing operating
conditions[

In order to utilize the sensing and actuating properties of piezothermoelastic materials\ the
interaction between the structure and the smart material must be well understood[ One of the
earliest and most comprehensive studies concerned with piezoelectric plates is the work of Tiersten
"0858#\ who obtained the dynamic equations and solutions with ignoring thermal e}ect[ Crawley
and de Luise "0876#\ Im and Atluri "0878#\ and Chandra and Chopra "0882# developed the
mechanical models for studying the interaction of piezoelectric patches surface!mounted to beams[
Crawley and Lazarus "0880# used surface mounted piezoelectric devices in strain prediction and
control of structures[ Lee "0889#\ and Mitchell and Reddy "0884# derived theories for laminated
piezoelectric plates using classical plate theory and simple third!order theory "Reddy\ 0873#\
respectively[ Wang and Rogers "0880# presented a model based classical plate theory for laminated
plates with spatially distributed piezoelectric patches[ Chandrashekhara and Agarwal "0882#
developed an active vibration control model for laminated plate with piezoelectric layer based on
the _rst!order shear deformation theory[ Tzou "0878#\ and Tzou and Gadre "0878# analyzed thin
laminates coupled with shell actuators for distributed vibration control[

It has been recognized that the temperature variation can a}ect the overall performance of a
control system "Tzou and Tseng\ 0889#[ The governing equations of a piezothermoelastic medium
were _rst derived by Mindlin "0850\ 0863#[ Nowacki "0867\ 0872# gave general theorems and
mathematical models of piezothermoelasticity[ Rao and Sunar "0883# developed a _nite element
formulation of piezothermoelastic media and integrated it with the distributed sensing and control
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of intelligent structures[ Tauchert "0881# applied Nowacki|s general theory to a piezothermoelastic
laminated plate and obtained static solutions using the classical lamination theory[ Tang and Xu
"0884# generalized Tauchert|s work to dynamic problems of piezothermoelastic laminated plates\
the dynamic solutions of the plates were derived for general forced vibrations with simply supported
boundary conditions[ However\ they did not establish the active vibration control model[

Since plates can be considered as fundamental elements of large space structures\ video head
positioners\ microgrippers\ etc[\ the problem of how to detect their motions and control them are
two of the questions that naturally arise[ In this paper\ the Hamilton principle for thermo!
mechanicalÐelectric coupling problem is derived _rst\ then the work of Mitchell and Reddy "0884#
is extended to encompass piezothermoelastic laminated plates[ Based on the velocity feedback
control\ a model for the active vibration control of laminated plates with piezothermoelastic
sensor:actuator is established[ An analytical solution is obtained for the case of general forces
acting on a simply supported piezothermoelastic laminated plate[ Numerical results are presented[
The factors that in~uence the controlled responses of the plate are examined[

1[ The Hamilton principle for thermo!mechanicalÐelectric coupling problem

In this paper\ the generalized Hamilton principle is applied to derive a set of approximate
governing equations for laminated plates with piezothermoelastic laminae[ One of the approxi!
mations is that the electric _eld is quasistatic and that the in~uence of a magnetic _eld and
magnetization is negligible[ The other is that deformations are in_nitesimal and that electric _elds
are small[ In this section\ the Hamilton principle will be derived based on Helmholtz energy[

Let V be the spatial region occupied by the body considered\ s be the total surface and n be the
outward normal[ In a _xed rectangular coordinate system oxi "i � 0\ 1\ 2#\ let u\ f\ s\ D\ E and q

be the displacements\ electric potential\ stress\ electric induction\ electric _eld and heat ~ow\
respectively\ and u � T−T9 is the temperature rise from the stress!free reference temperature T9[
Let h\ J and t be the speci_c entropy\ heat source and time\ respectively[ Field equation in the
domain V×ð9\ �#\ the governing equations are]

The strainÐdisplacement and electric _eld!potential relations]

gij �
0
1
"ui\ j¦uj\i#

Ei � −f\i "0#

The equations of motion and the charge equation of electrostatics

sij\j � ru�i

Di\ j � 9 "1#

The energy equation

qi\i¦T9h¾ � J "2#

the constitutive equations

sij � cijklgkl−esjiEs−biju
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Di � oisEs¦eirsgrs¦tiu

h � bijgij¦tiEi¦C
u

T9

"3#

the heat conduction equations

qi � −liju\j "4#

where cijkl\ esji\ oij\ bij\ ti\ lij and C as the elasticity constants\ piezoelectricity\ permitivity\ stress!
temperature coe.cients\ piezothermoelasticity\ coe.cients of heat conduction and heat capacity[

The mechanical boundary conditions are take to be

ui � u¹i

Pi � sijnj � PÞi "5#

where the overbar * indicates the prescribed values on the boundary[ The electric boundary
conditions are

f � f¹

V � −niDi � VÞ

and the thermal boundary conditions are

u � u¹

Q � qini � QÞ

Initial conditions are

ui"x0\ x1\ x2\ 9# � u9i"x0\ x1\ x2#

u¾i"x0\ x1\ x2\ 9# � u¾9i"x0\ x1\ x2#

u"x0\ x1\ x2\ 9# � u9"x0\ x1\ x2#

u¾ "x0\ x1\ x2\ 9# � u¾9"x0\ x1\ x2#

f"x0\ x1\ x2\ 9# � f9"x0\ x1\ x2# "6#

The total kinetic energy is

K � gV

0
1

ru¾iu¾ j dV

The total potential energy is

U � gV

ð2"gij\ u\ Ei#¦huŁ dV−gSP

PÞiui dS¦gV

"R−hu# dV¦gSQ

QÞu dS¦gSV

VÞf dS

2 �
0
1

cijklgijgkl−esjiEsgij−
0
1

oisEsEi−bijgiju−tiEiu−
Cu1

1T9



S[ Shen\ Z[!B[ Kuan`:International Journal of Solids and Structures 25 "0888# 0814Ð0836 0818

R � 0
1
kiju\iu\j

where 2 denotes the Helmholtz free energy[
The dissipative function is

q � gV

T9h¾u dV

Then\ the Hamilton|s principle can be obtained as

d g
t1

t0

"K−U−q# dt � g
t1

t0
6gV $"sij\j−ru�i#dui−0

12

1u
¦h1du−"qi\i¦T9h¾−J#du¦Di\idf% dV

¦gSQ

"Q−QÞ#du ds−gSP

"Pi−PÞi#dui dS−gSV

"V−VÞ#df dS7 dt � 9 "7#

This principle is analogous to that in Nowacki "0867#\ which can apply to all types of in_nitesimal
deformation and small electric _eld plates[ The control equations "0#Ð"2# and boundary conditions
"5# can be derived from the above equation[

2[ Basic equations

In this section\ we generalize Reddy|s work "Mitchell and Reddy\ 0884# to piezothermoelastic
laminated plates[ Consider a hybrid piezothermoelastic laminated plate\ which is symmetrically
laminated\ as shown in Fig[ 0[ The principle material directions are assumed to coincide with the
coordinates of the problem being analyzed[ The constitutive relationship in vectorial form for a
piezothermoelastic material with orthorhombic mm1 symmetry can be written as follows "see e[g[
Mindlin\ 0863^ Rao and Sunar\ 0883#

Fig[ 0[ Laminate con_guration[
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where si\ gi\ Di\ f and u represent the stress\ engineering strain\ electric induction\ electric potential
and temperature rise\ respectively[ cij are the transformed reduced sti}ness\ eij are transformed
piezoelectric constants and bi are transformed thermal constants that have been adjusted to
accommodate the plane stress approximation[

In the third!order shear deformation theory of Reddy "Reddy\ 0873^ Mitchell and Reddy\ 0884#\
the displacement _eld is assumed to be of the form

u0"x\ y\ z\ t# � u9"x\ y\ t#¦`0"z#cx"x\ y\ t#−`1"z#
1w9

1x

u1"x\ y\ z\ t# � v9"x\ y\ t#¦`0"z#cy"x\ y\ t#−`1"z#
1w9

1y

u2"x\ y\ z\ t# � w9"x\ y\ t# "00#

Here\ u9\ v9\ w9 are the displacement of a point on the midplane of the laminate\ and cx\ cy denote
the rotations of a transverse normal at z � 9 about the y and x axes\ respectively[ The functions
`0"z# and `1"z# are given as

`0"z# � z−
3z2

2H1
\ `1"z# �

3z2

2H1
"01#

where H is the total laminate thickness and z is assumed to be measured from the laminate
geometric midplane\ and the electric potential function f on a discrete layer is written as follows

fk"x\ y\ z\ t# � s
n

j�0

f k
j "z#8k

j "x\ y\ t# "02#

where f k
j "z# are taken to be Lagrange interpolation functions[ Using these de_nitions\ it is easy to

verify that the transverse shear stresses s3 and s4 are zero at the upper and lower surfaces of the
plate[ The plate is subject to the linear temperature variation "Tauchert\ 0881#
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u"z# �
u9¦uN

1
¦

uN−u9

H
z "03#

where u9 and uN denote temperature amplitude increases at the upper and lower surfaces of the
plate\ respectively\ which can be induced by infrared radiation[

Proceeding as described above\ eqn "7# is expanded\ giving

9 � dK¦dU¦dE−dV

� g
t9

9 gV

r"u¾0du¾0¦u¾1du¾1¦u¾2du¾2# dV dt

−g
t9

9 gV

"s0dg0¦s1dg1¦s2dg2¦1s3dg3¦1s4dg4¦1s5dg5# dV dt

−g
t9

9 gV

"D0dE0¦D1dE1¦D2dE2# dV dt

¦g
t9

9 gS

"P0du0¦P1du1¦P2du2¦qdf# dS dt "04#

The _rst integral denotes the virtual kinetic energy\ the second denotes the virtual work done
by internal forces\ the third represents the contribution of the electric _eld and the fourth denotes
the virtual potential energy due to applied forces[ The equilibrium equations for the laminated
piezothermoelectric plate are obtained the same as those of the plates of composite materials
"Reddy\ 0873^ Mitchell and Reddy\ 0884#

−0I0u�9¦I1c� x−I2

1w� 9

1x 1¦
1NÞ0

1x
¦

1NÞ5

1y
� 9

−0I0v�9¦I1c� y−I2

1w� 9

1y 1¦
1NÞ1

1y
¦

1NÞ5

1x
� 9

−$I0w� 9¦
1

1x 0I2u�9¦I4c� x−I5

1w� 9

1x 1¦
1

1y 0I2v�9¦I4c� y−I5

1w� 9

1y 1%
¦t2¦

11PÞ0

1x1
¦

11PÞ1

1y1
¦1

11PÞ5

1x 1y
¦

1QÞ3

1y
¦

1QÞ4

1x
� 9

−$0I1u�¦I3c� x−I4

1w� 9

1x 1%¦
1MÞ 0

1x
¦

1MÞ 5

1y
−QÞ4 � 9

−$0I1v�9¦I3c� y−I4

1w� 9

1y 1%¦
1MÞ 1

1y
¦

1MÞ 5

1x
−QÞ3 � 9
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1PÞjk
a

1xa

−GÞjk
2 � 9 "a � 0\ 1\ j � 0\ 1# "05#

where "NÞi\ MÞ i\ PÞi\ QÞi# are the stress resultants

NÞi � g
H:1

−H:1

si dz\ MÞ i � g
H:1

−H:1

si`0"z# dz\ PÞi � g
H:1

−H:1

si`1"z# dz\ i � 0\ 1\ 5

QÞi � g
H:1

−H:1

si

d`0

dz
dz\ i � 3\ 4

"Pjk
a \ Gjk

2 # and l0\ l1\ [ [ [ \ l5 are de_ned\ respectively\ as

PÞjk
a � g

zk

zk−0

Daf
k
j "z# dz\ GÞjk

2 � g
zk

zk−0

D2

df k
j

dz
dz

I0 � g
H:1

−H:1

r dz\ I1 � g
H:1

−H:1

r`0 dz\ I2 � g
H:1

−H:1

r`1 dz

I3 � g
H:1

−H:1

r`0`0 dz\ I4 � g
H:1

−H:1

r`0`1 dz\ I5 � g
H:1

−H:1

r`1`1 dz

Moreover\ for symmetric laminated\ by directly integrating it is readily obtained that I1 � I2 � 9[
Now\ the stress results "NÞi\ MÞ i\ PÞi\ QÞi# are decomposed into three parts

NÞi � Ni¦NP
i −Nu

i

MÞ i � Mi¦MP
i −Mu

i

PÞi � Pi¦PP
i −Pu

i

QÞi � Qi¦QP
i −Qu

i "06#

The _rst part is when the piezoelectric and thermal e}ects are not present[ The second part is
due to the piezoelectric e}ect and the third part is due to the thermal e}ect[ The _rst part is
obtained by integrating eqns "8# and "09# with respect to the thickness coordinate z[ The resulting
expression for symmetric laminated plate takes the form

8
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F
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1w9

1x

J

G

f

F

G

j

"19#

where the laminate sti}ness Aij\ Bij and so on are de_ned as

Bij � g
H:1

−H:1

`0`0cij dz\ BÞij � g
H:1

−H:1

`0`1cij dz

Aij � g
H:1

−H:1

cij dz\ Dij � g
H:1

−H:1

`1`1cij dz "i\ j � 0\ 1\ 5#

F33 � g
H:1

−H:1

c33 0
d`0

dz 1
1

dz\ F11 � g
H:1

−H:1

c44 0
d`0

dz 1
1

dz

and the stress resultants due to the piezoelectric e}ect can be de_ned as

NP
0 � s

m

k�0

ek
20 0 s

n

j�0

hjk
0 8k

j 1\ NP
1 � s

m

k�0

ek
21 0 s

n

j�0

hjk
0 8k

j 1\ NP
5 � 9

MP
0 � s

m

k�0

ek
20 0 s

n

j�0

hjk
1 8k

j 1\ MP
1 � s

m

k�0

ek
21 0 s

n

j�0

hjk
1 8k

j 1\ MP
5 � 9

PP
0 � s
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n

j�0

hjk
2 8k

j 1\ PP
1 � s

m

k�0

ek
21 0 s

n
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hjk
2 8k

j 1\ PP
5 � 9
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QP
3 � s

m

k�0

ek
13 0 s

n

j�0

Djk
3

18k
j

1y 1\ QP
4 � s

m

k�0

ek
04 0 s

n

j�0

Djk
3

18k
j

1x 1 "10#

where

hjk
0 � g

zk

zk−0

df k
j

dz
dz\ hjk

1 � g
zk

zk−0

`0

df k
j

dz
dz

hjk
2 � g

zk

zk−0

`1

df k
j

dz
dz\ Djk

3 � g
zk

zk−0

d`0

dz
f k

j dz

In addition the stress resultants due to the thermal e}ects are de_ned as

8
Nu

0

Nu
1

Nu
5
9� s

m

k�0 g
zk

zk−0 &
b0

b1

9 ' u dz\ 8
Mu

0

Mu
1

Mu
5
9� s

m

k�0 g
zk

zk−0 &
b0

b1

9 ' `0u dz

8
Pu

0

Pu
1

Pu
5
9� s

m

k�0 g
zk

zk−0 &
b0

b1

9 ' `1u dz\ Qu
3 � Qu

4 � 9 "11#

The boundary conditions are given as

u9 or nxNÞ0¦nyNÞ5

v9 or nyNÞ1¦nxNÞ5

w9 or nx 0I4c� x−I5

1w� 9

1x 1¦ny 0I4c� y−I5

1w� 9

1y 1¦Qn

1w9

1x
or nxPÞ0¦nyPÞ5

1w9

1y
or nyPÞ1¦nxPÞ5

cx or −nxMÞ 0−nyMÞ 5

cy or −nyMÞ 1−nxMÞ 5 "12#

where

Qn � −nx

1PÞ0

1x
−ny

1PÞ1

1y
−nx

1PÞ5

1y
−ny

1PÞ5

1x
−nyQÞ3−nxQÞ4

In this paper we study simply supported and symmetric cross!ply plates\ the equations of motion
for the displacement can be expressed as
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1x1
¦ek

21 s
n

j�0

hjk
2

118k
j

1y1 %¦ s
m

k�0 $ek
13 s

n

j�0

Djk
3

118k
j

1y1
¦ek

04 s
n

j�0

Djk
3

118k
j

1x1 %
� I0w� 9¦

1

1x $I4c� x−I5

1w9

1x %¦
1

1y $I4c� y−I5

1w9

1y %¦
11Pu

0

1x1
¦

11Pu
1

1y1
−t2 "13#

which corresponds to the stress resultants equilibrium equations\ and

−BÞ00

12w9

1x2
−"BÞ01¦1BÞ55#

12w9

1x 1y1
−F44

1w9

1x
¦B00

11cx

1x1
¦B55

11cx

1y1
−F44cx

¦"B01¦B55#
11cy

1x 1y
¦ s

m

k�0 $ek
20 s

n

j�0

hjk
1

18k
j

1x
−ek

04 s
n

j�0

Djk
3

18k
j

1x %� I3c� x−I4

1w� 9

1x
¦

1Mu
0

1x

−BÞ11

12w9

1y2
−"BÞ01¦1BÞ55#

12w9

1x1 1y
−F33

1w9

1y
¦B55

11cy

1x1
¦B11

11cy

1y1
−F33cy

¦"B01¦B55#
11cx

1x 1y
¦ s

m

k�0 $ek
21 s

n

j�0

hjk
1

18k
j

1y
−ek

13 s
n

j�0

Djk
3

18k
j

1y %� I3c� y−I4

1w� 9

1y
¦

1Mu
1

1y
"14#

which corresponds to the moment resultants equilibrium conditions[ It can be seen that the thermal
e}ect and electric e}ect are explicitly included in eqns "13# and "14#[

For sensor purposes\ there exist two conditions] one is the close circuit condition "Lee\ 0889#
and the other is the open!circuit "Tzou et al[\ 0882#[ In this paper\ the piezothermoelastic lamine
is in the open!circuit condition\ the following equation is adopted "Mitchell and Reddy\ 0884#\

Gjk
2 � g

zk

zk−0
6e20g0¦e21g1−o22 0s

n

i�0

df k
i

dz
8k

i 1¦t2u7
df k

j

dz
dz � 9 "15#

Based on the thin lamina assumption\ one linear interpolation function is used for the pie!
zothermoelastic lamina\ substituting it into the aforesaid equation\ and integrating through the
thickness of the kth lamina gives
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Vk �
0

o22 g
zk

zk−0

"e20g0¦e21g1¦t2u# dz "16#

where Vk � 8k
1−8k

0[ The left side of eqn "16# is the output voltage of the sensor\ caused by the
strain and therm in the right side[

3[ Non!damping vibration of a simply supported plate

To obtain meaningful solutions\ in this section a laminated plate with simply supported boundary
conditions is studied[ The hybrid laminate is a six!layer hybrid laminate by adding two pie!
zothermoelastic layers symmetrically to a four!layer graphite:epoxy substrate\ which is a symmetric
cross!ply panel having ply angles ð9>:89>Łs and ply thickness h0 "Fig[ 0#[ Let H and h1 denote the
total plate thickness and the piezothermoelastic layer thickness\ respectively[ The pie!
zothermoelastic layers are subjected to an applied electric potential f9[ Material properties of the
laminae are given in the Appendix[

Employing the method analogous to "Mitchell and Reddy\ 0884# each piezothermoelastic layer
can be regarded as two mathematical layers with equal thickness\ whose electric potential can be
modeled using linear Lagrange elements[

Then\ the electric potentials can be written as

8L0
0 � f9\ 8L0

1 � 8L1
0 � fL\ 8L1

1 � 9

8U0
0 � 9\ 8U0

1 � 8U1
0 � fU\ 8U1

1 � f9

where the superscript {L0| means the lower half of the lower piezothermoelastic layers\ {L1| means
the upper half of the lower piezothermoelastic layer\ {U0| means the lower half of the upper
piezothermoelastic layer and {U1| means the upper half of the upper piezothermoelastic layer[ The
subscript {0| represents the electric potential at the lower surface of the corresponding layer and
{1| the electric potential at the upper surface[

The solution for simply supported laminates has the following form]

u9 � s
�

m�0

s
�

n�0

umn cos amx sin bny eivt

v9 � s
�

m�0

s
�

n�0

vmn sin amx cos bny eivt

w9 � s
�

m�0

s
�

n�0

wmn sin amx sin bny eivt

cx � s
�

m�0

s
�

n�0

cx
mn cos amx sin bny eivt

cy � s
�

m�0

s
�

n�0

cy
mn sin amx cos bny eivt
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fL � s
�

m�0

s
�

n�0

fL
mn sin amx sin bny eivt

fU � s
�

m�0

s
�

n�0

fU
mn sin amx sin bny eivt "17#

where am �"mp:a#\ bn �"np:b# and v is the excitation frequency[
The plate is subjected to the harmonic mechanical force

t2"x\ y\ z\ t# � t2"x\ y# eivt "18#

The temperature variation is

u"x\ y\ z\ t# � 0
u9¦uN

1
−

u9−uN

H
z1 eivt "29#

The electric potential is

f9"x\ y\ z\ t# � f9"x\ y# eivt "20#

These tractions can be expanded in the double!Fourier series as

u � s
�

m�0

s
�

n�0

umn sin amx sin bny eivt

t2 � s
�

m�0

s
�

n�0

tmn sin amx sin bny eivt

f9 � s
�

m�0

s
�

n�0

f9mn sin amx sin bny eivt

"Nu
0\ Nu

1\ Mu
0\ Mu

1\ Pu
0\ Pu

1# � s
�

m�0

s
�

n�0

"Nu
0mn\ Nu

1mn\ Mu
0mn\ Mu

1mn\ Pu
0mn\ Pu

1mn# sin amx sin bny eivt "21#

where

"umn\ tmn\ f9mn# �
3
ab g

b

9 g
a

9

"u\ t2\ f9# sin amx sin bny dx dy

and "Nu
0mn\ Nu

1mn\ Mu
0mn\ Mu

1mn\ Pu
0mn\ Pu

1mn# can be made out by the same way[
Substituting "17#Ð"21# into eqns "10#\ "11#\ "13# and "14#\ collecting the coe.cients\ one obtains

$
−A00a

1
m−A55b

1
n¦I0v

1 −"A01¦A55#ambn

−"A01¦A55#ambn −A55a
1
m−A11b

1
n¦I0v

1% 6
umn

vmn7� 6
amNu

0mn

bnN
u
1mn7 "22#

and
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EU � T "23#

for any _xed value of m and n\ in which

U � ðwmn cx
mn cy

mn fL
mn fU

mnŁT "24#

T �

F

G

G

G

g

G

G

G

f

ð"D00
3 ¦D17

3 #"e13b
1
n¦e04a

1
m#¦"h00

2 ¦h17
2 #"e21b

1
n¦e20a

1
m#Łf9mn−Pu

0mna
1
m

−Pu
1mnb

1
m−tmn

Mu
0mnam−ðe20"h00

1 ¦h17
1 #−e04"D00

3 ¦D17
3 #Łamf9mn

Mu
1mnbn−ðe21"h00

1 ¦h17
1 #−e13"D00

3 ¦D17
3 #Łbnf9mn

X10
mn¦X01

mn−"o22R
10
0 ¦o00T

10
0 a1

m¦o11T
10
0 b1

n #f9mn

X16
mn¦X07

mn−"o22R
07
1 ¦o00T

07
1 a1

m¦o11T
07
1 b1

n #f9mn

J

G

G

G

h

G

G

G

j

"25#

where Xjk
mn are determined by

g
zk

zk−0

t2u
df k

j

dz
dz � s

�

m�0

s
�

n�0

Xjk
mn sin amx sin bny

The elements of the coe.cient matrix E that is symmetric are given by

E00 � −D00a
3
m−"3D55¦1D01#a1

mb1
n−D11b

3
n¦F33b

1
n−F44a

1
m¦I0v

1¦I5v
1"a1

m¦b1
n #

E01 � BÞ00a
2
m¦"BÞ01¦1BÞ55#amb1

n−F44am−I4v
1am

E02 � BÞ11a
2
m¦"BÞ01¦1BÞ55#bna

1
m−F33bn−I4v

1bn

E03 � −"D10
3 ¦D01

3 #"e13b
1
n¦e04a

1
m#−"h10

2 ¦h01
2 #"e21b

1
n¦e20a

1
m#

E04 � −"D16
3 ¦D07

3 #"e13b
1
n¦e04a

1
m#−"h16

2 ¦h07
2 #"e21b

1
n¦e20a

1
m#

E11 � −B00a
1
m−B55b

1
n−F44¦I3v

1

E12 � −"B01¦B55#ambn

E13 � ðe20"h10
1 ¦h01

1 #−e04"D10
3 ¦D01

3 #Łam

E14 � ðe20"h16
1 ¦h07

1 #−e04"D16
3 ¦D07

3 #Łam

E22 � −B55a
1
m−B11b

1
n−F33¦I3v

1

E23 � ðe21"h10
1 ¦h01

1 #−e13"D10
3 ¦D01

3 #Łbn

E24 � ðe21"h16
1 ¦h07

1 #−e13"D16
3 ¦D07

3 #Łbn

E33 � "T10
1 ¦T01

0 #o00a
1
m¦"R10

1 ¦R01
0 #o22¦"T10

1 ¦T01
0 #o11b

1
n

E34 � 9

E44 � "T16
1 ¦T07

0 #o00a
1
m¦"R16

1 ¦R07
0 #o22¦"T16

1 ¦T07
0 #o11b

1
n "26#

where
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Tjk
i � g

zk

zk−0

f k
i f

k
j dz\ Rjk

i � g
zk

zk−0

df k
i

dz
df k

j

dz
dz

The theory developed herein can be reduced to the classical plate theory when one lets `1"z# � 9[
This theory can also be applied to a laminate plate with spatially distribute piezothermoelastic

patches[ In this case\ the thickness and size of piezothermoelastic patches are assumed to be
relatively smaller than those of each lamina\ so piezothermoelastic patches can be neglected for
calculating the global properties of the laminate[

The electric potential function for distributed piezothermoelastic patches is given as

fk"x\ y\ z\ t# � s
n

j�0

f k
j "z#8k

j "x\ y\ t#Rk"x\ y# "27#

where the generalized location function is de_ned as

Rk"x\ y# � ðH"x−xk
0#−H"x−xk

1#Ł = ðH"y−yk
0#−H"y−yk

1#Ł

and the Heaviside function\ H"x−x9# is de_ned as follows

H"x−x9# � 0\ z − z9

� 9\ z ³ z9 "28#

Replacing 8k
j by 8k

j Rk in eqns "13# and "14#\ one can obtain the control equations for distributed
piezothermoelastic patches[

To investigate the e}ect of the position of the PVDF layer on the de~ection of the laminate\ two
cases\ which are shown in Fig[ 1"b and c# are computed in this section[ Figure 2 contains the static
de~ection at the center of the plate for these two cases[ When the laminate is only subjected to the
thermal _eld\ it is noted that the de~ection of case 0 is greater than that of case 1 "as shown in Fig[
2"a##[ Similarly\ when the laminate is subjected to the electric _eld alone\ Fig[ 2"b# shows that the
de~ection of case 0 is greater than that of case 1[ These _gures imply that the position of the PVDF
layer has an important e}ect on the performance of the smart structure\ which is rational due to
the fact that the moment resultants vary with the position of the PVDF layer[

4[ Active vibration control of simply supported plates

As shown above\ the actuator and sensor equations have been developed separately[ For an
improved system performance\ they have to be used in conjunction to form a closed!loop control
system[ Based on the velocity feedback control\ the model for active vibration control of simply
supported laminated plates with piezothermoelastic sensor:actuator is developed[

Consider a hybrid piezothermoelastic laminated plate as shown in Fig[ 0[ In this section\ the
sensor eqn "16# is employed[ Thus\ the output voltage of the sensor can be expressed as

V �
0

o22 6e20 $
1u9

1x
"z0−z9#¦

1cx

1x g
z0

z9

`0 dz−
11w9

1x1 g
z0

z9

`1 dz%¦e21 $
1v9

1y
"z0−z9#
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Fig[ 1[ The control model and three con_gurations[

Fig[ 2[ The e}ect of position of PVDF on de~ection "a:H � 49#[ "a# u9 � 0>C\ uN � 9>C\ f � 9 V[ "b# u9 � uN � 9>C\
f � 0 V[

¦
1cy

1y g
z0

z9

`0 dz−
11w9

1y1 g
z0

z9

`1 dz%¦t2 g
z0

z9

u dz7 "39#

This equation states that the output voltage of the sensor relates the displacement and re~ects
the vibration of the laminate[ To dampen the response of the system\ one may use the electric
potential to the actuator as the control variable[ Since the output voltage of the sensor is accessible\
the electric potential applied to the actuator can be expressed as
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f9 � MVþ � l0 $V0

1u¾9

1x
¦V1

1c¾ x

1x
−V2

11w¾ 9

1x %¦l1 $V0

1v¾9

1y
¦V1

1c¾ y

1y
−V2

11w¾ 9

1y %¦l2 g
z0

z9

u¾ dz

"30#

where M is the gain to provide feedback control and

l0 �
e2i

o22

M\ "i � 0\ 1#\ l2 �
t2M
o22

\ V0 � z0−z9\ V1 � g
z0

z9

`0 dz\ V2 � g
z0

z9

`1 dz

As the gain is constant with respect to time\ this controller is known as a constant gain feedback
controller[

For simply supported plate\ the responses of the laminate and the excitation are expressed in
double Fourier series just like that in Section 3\ but replacing umn eivt by the general form umn"t#[
Thus substituting eqn "30# into eqns "13# and "14#\ one can obtain the control equation as

Tmnx�mn¦Qmnx¾mn¦Kmnxmn � Zmn "31#

where

Tmn �

K

H

H

H

H

H

H

H

k

−I0−I5"a1
m¦b1

n # I4am I4bn 9 9

−I3 9 9 9

−I3 9 9

−I0 9

−I0

L

H

H

H

H

H

H

H

l

xmn � ðwmn"t# cx
mn"t# cy

mn"t# umn"t# vmn"t#ŁT

K"ij#
mn � Eij =v�9 "i\ j ¾ 2#\ K"43#

mn � K"34#
mn � −"A01¦A55#ambn

K"33#
mn � −"A00a

1
m¦A55b

1
n #\ K"44#

mn � −"A55a
1
m¦A11b

1
n #\ K"ij#

mn � 9 "for remaining i\ j#

Qmn � F =

F

G

G

G

g

G

G

G

f

V2"l0a
1
m¦l1b

1
n #

−V1l0am

−V1l1bn

−V0l0am

−V0l1bn

J
T

G

G

G

h

G

G

G

j

\ F �

F

G

G

G

g

G

G

G

f

−h2"e20a
1
m¦e21b

1
n #−D3"e04a

1
m¦e13b

1
n #

"e20h1−e04D3#am

"e21h1−e13D3#ba

e20h0am

e21h0bn

J

G

G

G

h

G

G

G

j

Zmn � ð−Pu
0mna

1
m−Pu

1mnb
1
n−tmn Mu

0mnam Mu
1mnbn Nu

0mnam Nu
1mnbnŁT−ivl2GmnF

Gmn � g
z0

z9

umn dz

Here\ Qmn is the feedback gain matrix\ i[e[ the equivalent damping matrix[ The Newmark direct
integration scheme "Hughes et al[\ 0867# can be used to approximate the time derivative in eqn
"31#[
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In this section\ these excitations are assumed to be harmonic\ they can be expressed as
Zmn"t# � Zmn eivt\ the steady response of the system can also be expressed Xmn"t# � Xmn eivt[ Sub!
stituting this form into eqn "31# and canceling the factor eivt yields

ðKmn−v1Tmn¦ivQmnŁXmn � Zmn "32#

Solving this equation can obtain the amplitude Xmn[
A numerical example is calculated to show the e}ect of the property\ relative thickness and the

position of the piezothermoelastic layer on the performance of the laminate[ Attention is again
given to the con_guration and geometry of the plate shown in Fig[ 0[ The plate lay!up and material
properties are also described in Section 3[ In this procedure\ three cases are involved which are
shown in Fig[ 1 "b\ c\ and d#\ representing three di}erent positions of the piezothermoelastic
sensor:actuator pairs with thickness h1[ The control model is shown in Fig[ 1"a#[ The observation
point is at x � 9[4a and y � 9[4b in the plate[ The thermal force is considered\ and the temperatures
on the lower and upper surface are u9 � 79>C and uN � 9>C\ respectively[

In Table 0\ we give the lowest natural frequencies v9 under di}erent h1:h0 for these three cases
where the sensor:actuator pairs are PVDF[

Figures 3Ð5 contain the amplitude of the response w vs the excitation frequency under di}erent
gains for all three of the previously mentioned cases and for three di}erent ratios h1:h0[ The
sensor:actuator pairs are PVDF[ From these _gures\ one can _nd] in case 0\ the response is reduced
by increasing feedback gains M in the vicinity of v9\ while v is far from v9\ the change of the
response by increasing M is very small^ when M reaches a certain value\ the response becomes a
gentle curve whose climax is at v � 9\ moreover\ the climax decreases as the thickness of PVDF
increases[

In case 1\ the result is complicated[ Increasing M\ the position of the climax moves forward and
the climax _rst decreases\ then increases[ When v is far away from the position of the climax\ the
response decreases as M increases[ This means that there exists a certain M that can reduce the
response obviously[

In case 2\ the response can hardly be suppressed for small piezothermoelastic thickness ratios
h1:h0[ While h1:h0 is greater\ the e}ect is similar to that of case 1[

These _gures state that the control e}ect of case 0 is better than that of the others[ This provides
a rationale to surface mounted piezothermoelastic devices in structural vibration damping[

For PZT sensor:actuator pairs the results are given in Fig[ 6 where the piezothermoelastic
thickness ratio h1:h0 � 9[91[ The trend resembles that for PVDF[ However\ due to the fact that the
density of PZT is greater than that of graphite:epoxy\ the PZT pairs have an obvious e}ect on the

Table 0
The lowest natural frequencies

h1:h0 Case 0 Case 1 Case 2

9[91 056[529 058[336 069[946
0[9 039[000 102[828 131[448
1[9 017[779 143[927 294[269
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Fig[ 3[ Amplitude of the response w vs excitation frequency under di}erent feedback gain "h1:h0 � 9[91\ PVDF#[ "a#
Case 0[ "b# Case 1[ "c# Case 2[

Fig[ 4[ Amplitude of the response w vs excitation frequency under di}erent feedback gain "h1:h0 � 0\ PVDF#[ "a# Case
0[ "b# Case 1[ "c# Case 2[
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Fig[ 5[ Amplitude of the response w vs excitation frequency under di}erent feedback gain "h1:h0 � 1\ PVDF#[ "a# Case
0[ "b# Case 1[ "c# Case 2[

Fig[ 6[ Amplitude of the response w vs excitation frequency under di}erent feedback gain "h1:h0 � 9[91\ PZT#[ "a# Case
0[ "b# Case 1[ "c# Case 2[
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global properties of the laminate[ Comparing Fig[ 6"a# and Fig[ 3"a#\ the reductions by PZT is
more obvious than that by PVDF\ the climax is suppressed at M � 09\ but\ in factor the response
by PZT is greater than that by PVDF at the same M[ This implies that the control e}ect of PZT
is no better than that of PVDF[

5[ Conclusion

In this paper\ the third!order shear deformation theory of Reddy is extended to encompass
piezothermoelastic laminated plates[ Based on the voltage velocity feedback control the model
for the active vibration control of simple supported laminated plates with piezothermoelastic
sensor:actuator pairs is established[ The results allow us to select the best piezothermoelastic
material\ position and thickness ratio of the sensor:actuator pairs to control the response of the
structure[ The harmonic response results show a potential application to actively reduce the
harmful e}ect from thermal forces for a certain control aim[

Appendix

Material properties

Graphite:epoxy
E0 � 070 GPa\ E1 � E2 � 09[2 GPa
G01 � G02 � 6[06 GPa\ G12 � 1[76 GPa
m01 � m02 � 9[17\ m12 � 9[22
a0 � 9[91×09−5 K−0\ a1 � a2 � 11[4×09−5 K−0

r � 0479 kg:m2

PZT "Dunn and Taya\ 0882#]

cE �

K

H

H

H

H

H

H

H

k

037 65[1 63[1 9 9 9

037 63[1 9 9 9

020 9 9 9

14[3 9 9

14[3 9

24[8

L

H

H

H

H

H

H

H

l

GPa\

eT �

K

H

H

H

H

H

H

H

k

9 9 −1[0

9 9 −1[0

9 9 8[4

9 8[1 9

8[1 9 9

9 9 9

L

H

H

H

H

H

H

H

l

c:m1\
o

o9

� &
359 9 9

9 359 9

9 9 124'
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a � 9[8×09−2 K−0\ r � 6599 kg:m2 o9 � 7[74×09−01 c1:N m1

PVDF "Varadan et al[\ 0878#

cE �

K

H

H

H

H

H

H

H

k

2[50 0[50 0[31 9 9 9

2[02 0[20 9 9 9

0[52 9 9 9

9[44 9 9

9[48 9

9[58

L

H

H

H

H

H

H

H

l

GPa\

dT �

K

H

H

H

H

H

H

H

k

9 9 10[9

9 9 0[4

9 9 −21[4

9 −12 9

−16 9 9

9 9 9

L

H

H

H

H

H

H

H

l

×09−01 c:N\
o

o9

� &
5[0 9 9

9 6[4 9

9 9 5[6'
eT � cEdT\ a � 019×09−5 K−0\ r � 0799 kg:m2
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